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Abstract

Abstractive text summarization and several001
state-of-the-art summarization models have002
gained considerable interest in recent years.003
All these models, however, are usually bench-004
marked against a general-purpose corpus, and005
their performance on domain-specific text sum-006
marization is yet to be determined. This paper007
presents an overview of some representative008
large language models (LLMs) based on the009
research gaps they address and then catego-010
rizes them based on their usability guidelines011
and design principles. We also selected three012
open-source text summarization datasets, cho-013
sen based on their domain complexity, provid-014
ing a unified framework for assessing various015
LLMs in specialized domains. We evaluate con-016
temporary models against the selected datasets017
while trying to optimize each model for the018
best performance using their usability guide-019
lines. Our experiments show that PEGASUS-X,020
an Efficient Transformer fine-tuned on a 16K021
context window outperforms all other LLMs in-022
cluding direct inference on GPT 3.5. Addition-023
ally, we observed that increasing the context024
window only slightly increases the model per-025
formance and corroborates the fact that bigger026
models do perform better. This study serves027
as a crucial resource for researchers aiming to028
develop and compare large language models029
for domain-specific abstractive summarization.030

1 Introduction031

Abstractive Text Summarization has been an active032

research area in the past years, and while state-033

of-the-art models can produce human competitive034

summaries, they are more suitable for general-035

purpose text. The performance of these models036

deteriorates when tested on a domain-specific text037

summarization task. One common explanation is038

the shift in the dataset distribution as most of the039

large language models (LLMs) are pre-trained on040

general-purpose corpora such as C4 (Raffel et al.,041

2020a), and hence do not fully comprehend the042

fine-grained linguistic details and concepts of a 043

niche area such as the medical, scientific, or legal 044

domain. 045

Apart from the domain-adaptation capabilities, 046

an additional challenge in abstractive summariza- 047

tion is the associated large document size (Afzal 048

et al., 2023). Most of the text that needs to be 049

summarized is large in size, and basic text sum- 050

marization models cannot handle it because of the 051

input size limitation of 512 or 1024 tokens. A 052

simple workaround has been truncating the input 053

text, leading to a loss in context size that hinders 054

the model’s performance. At this time, GPT-3.5 055
1 offers a 16K token context window, and GPT-4 056

(OpenAI, 2023) up to a 32K context window. How- 057

ever, both of these models are closed-domain and 058

only accessible through an API. 059

Over the years, several models suitable for the 060

abstractive text summarization task have been re- 061

leased, each following a different design princi- 062

ple and usability guidelines. Firstly, we had the 063

transformer-based Seq2Seq models like T5 (Raf- 064

fel et al., 2020b) and BART (Lewis et al., 2019), 065

depicting a classic encoder-decoder architecture 066

while being pre-trained on a large corpus and later 067

fine-tuned on a smaller domain-specific dataset. 068

Despite showing great performance, these models 069

still suffer from the quadratic complexity emerging 070

from the self-attention matrix and are thus lim- 071

ited to handling only 512 or 1024 tokens, respec- 072

tively. An initial attempt to reduce the quadratic 073

complexity was illustrated in the architectures em- 074

ployed by the Efficient Transformers (Tay et al., 075

2022) family. Longformer-Encoder-Decoder (Belt- 076

agy et al., 2020) or BigBirdPegasus (Zaheer et al., 077

2021) with a sparse self-attention matrix scaled 078

the input length up to 4096 tokens. However, the 079

most recent architectures like LongT5 (Guo et al., 080

2022) and Pegasus-X (Phang et al., 2022), utiliz- 081

1https://platform.openai.com/docs/models/
gpt-3-5
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ing the same approach, scaled the input text length082

limitation up to 16K tokens, while still, mostly,083

preserving model performance.084

While there is no denying the above models’ abil-085

ities, their performance on domain-specific data086

and in general their domain-adaptation capabili-087

ties are yet to be evaluated. This paper intends088

to evaluate one representative model of each class089

on their domain-specific text summarization capa-090

bilities while taking into account their usability091

guidelines such as fine-tuning or direct inference.092

Nevertheless, given the recent surge in the number093

of LLMs, we felt it to be appropriate to take several094

models into consideration, differing in model size,095

context size, and overall architecture. In general,096

vanilla Seq2Seq models such as BART, BigBirdPe-097

gasus, and PEGASUS-X are meant to be fine-tuned098

on a downstream task. On the other hand, GPT-like099

models are more suitable for direct inference or in-100

context learning approaches (Brown et al., 2020).101

Additionally, we propose a set of datasets against102

which we evaluate our models, providing a stan-103

dard benchmark to evaluate model performance on104

domain-specific summarization. We select these105

datasets based on their large document size and the106

specificity of the textual domain represented. We107

further elaborate on this benchmark in section 4.108

Through our experiments, we tried to answer the109

following two theoretical questions:110

1. Does allowing more text as input improve111

the quality of the generated summary for the112

domain-specific text summarization task?113

2. Are ChatGPT-like LLMs, that are not meant114

to be fine-tuned, able to perform competitively115

on a domain-specific summarization task?116

Finally, we present a taxonomy in which we cat-117

egorize text summarization models into standard118

Encoder-Decoder Transformer models, Efficient119

Transformers, and GPT-like models (LLMs) with120

billions of parameters. We compare the perfor-121

mance between these categories by experimenting122

with some representative models as explained in123

section 5.124

2 Background125

2.1 Quadratic Complexity of Transformers126

Since the introduction of the original Transformer127

architecture by Vaswani et al. (2017), its attention128

mechanism has become a cornerstone for numerous129

state-of-the-art natural language processing models, 130

since it represents a vast increase in performance 131

and efficiency compared to the traditional LSTMs 132

(Hochreiter and Schmidhuber, 1997). However, 133

despite how successful these models have become, 134

they maintain quadratic complexity in the attention 135

module, leading to severe computational challenges 136

when working with large documents pervasive in 137

our environment (e.g. books, research articles, and 138

legal documents, among others). 139

2.2 Large Language Models 140

The history of LLMs showcases a steady and re- 141

markable evolution. Their capabilities have signifi- 142

cantly expanded over time due to increased model 143

size, larger datasets, and a plethora of algorithmic 144

innovations. The groundbreaking work by Vaswani 145

et al. (2017) presented the Transformer model, 146

which introduced the self-attention mechanism, en- 147

abling models to consider long-range dependencies 148

in text and initiating a new era in natural language 149

processing. These models are trained with the sim- 150

ple objective of predicting the next word given a 151

specific context, which quite surprisingly is suffi- 152

cient to promote quite impressive reasoning and 153

writing abilities, provided that enough scale is in 154

play. 155

This realization led to an escalating trend to- 156

wards larger models. Work like GPT-4 (OpenAI, 157

2023) and PaLM (Chowdhery et al., 2022) ex- 158

panded on Transformer’s capabilities, being trained 159

on enormous text corpora and showcasing impres- 160

sive performance on a broad set of natural language 161

understanding and generation tasks. They showed 162

remarkable zero-shot and few-shot learning capa- 163

bilities, leading to a paradigm shift in how we ap- 164

proach task-specific training, foregoing fine-tuning 165

task-specific models and instead relying on a larger, 166

general, language model. 167

2.3 Efficient Transformers 168

On the other hand, the original Transformer archi- 169

tecture has issues scaling to larger token counts 170

due to the novel attention mechanism itself. To ad- 171

dress this, researchers have proposed a plethora of 172

efficient models which aim to reduce the quadratic 173

nature of attention to a linear basis. Furthermore, 174

they can be roughly clustered (Tay et al., 2022) 175

based on their optimization approaches which can 176

differ quite substantially. Some noteworthy exam- 177

ples include making clever use of memory access 178

patterns with FLASH attention (Dao et al., 2022), 179
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explicitly learning attention patterns (Tay et al.,180

2020a; Kitaev et al., 2020), computing a low-rank181

representation of the attention matrix Choromanski182

et al., 2022; Wang et al., 2020 and the computa-183

tion of fixed local and/or global attention patterns184

(Zhu et al., 2021; Beltagy et al., 2020; Zaheer et al.,185

2021).186

Naturally, these differ in implementation com-187

plexity and hardware compute efficiency, making188

the standalone evaluation of their performance trou-189

blesome. Regardless, released attempts at bench-190

marking (Zhang et al., 2022; Xiong et al., 2022b)191

these optimizations show a key takeaway: local192

attention modules with fixed or almost fixed atten-193

tion patterns, which focus on computing attention194

against adjacent tokens, have overshadowed some195

of the more complex attention patterns listed above196

which attempt to approximate the global attention197

matrix. This suggests that the information present198

in the neighboring tokens is mostly sufficient to199

achieve strong performance in downstream tasks.200

Furthermore, when considering contemporary201

models, we can effectively verify which optimiza-202

tions have withstood the test of time by observing203

which of them persist in the efficient adaptations204

of previously well-received models such as Pega-205

susX (Phang et al., 2022), BART-LS (Xiong et al.,206

2022a), LongT5 (Guo et al., 2022).207

Not surprisingly, these "proven" optimizations208

coincide with most of the attention benchmark find-209

ings (see, for example, Phang et al. (2022) and its210

staggered block-wise attention mechanism similar211

to the aforementioned fixed attention patterns). Fol-212

lowing this conclusion, our model selection, dis-213

cussed in a later section, attempts to reflect the214

attention module timeline discussed here.215

2.4 Transfer Learning216

Since it takes lots of time and hardware resources217

to train a large language model, Transfer Learning218

allows us to reuse the pre-trained model weights219

for specific tasks/domains instead of starting from220

scratch. In general, this paper explores Trans-221

fer Learning from a domain-adaptation point of222

view. This is possible in the form of continued223

pre-training of the existing weights, fine-tuning224

a few selected layers for a new task/domain, or225

through in-context learning which tries to localize226

and identify the relevant embedding space by using227

the additional context from the prompt. In addition,228

since we are focusing on domain-specific language,229

we will further evaluate how model performance 230

differs when the model is tasked to summarize doc- 231

uments with a lexical corpus different from what 232

is available in its pre-training process, compared 233

to the performance observed after the fine-tuning 234

procedure. Moreover, recent work (Hu et al., 2021; 235

Mao et al., 2022) has been successful at exploring 236

a more parameter-efficient method of domain adap- 237

tation which we would like to explore, but leave 238

as a future work direction, sticking to the tradi- 239

tional approach with the hyperparameters detailed 240

in Appendix A. 241

3 Related Work 242

Benchmarking LLMs is not a novel idea, however, 243

after a thorough literature review, we found existing 244

publications either to be too broad for our intended 245

goal or focused on a parallel aspect. Furthermore, 246

to the best of our knowledge, these models have not 247

been benchmarked on a domain-specific text sum- 248

marization task, thus we intend to evaluate if these 249

models are suited for those who are dependent on 250

the specificity of their data and its overall length. 251

This paper should provide a uniform overview of 252

what models perform best in this scenario. We will 253

proceed to mention some of the publications that 254

inspired our work. 255

Long Range Arena (LRA) (Tay et al., 2020b). 256

Widely accepted as a significant contribution, par- 257

ticularly due to the growing number of efficient 258

transformer models being introduced and the need 259

to assess their performance. Although LRA is ex- 260

tensive, we feel that it is lacking in the sense that 261

it only covers datasets related to general reason- 262

ing tasks, such as the hierarchical mathematical 263

reasoning dataset ListOps (Nangia and Bowman, 264

2018) and image classification using the CIFAR- 265

10 dataset (Krizhevsky, 2009). Additionally, the 266

benchmark only covers the encoder-based model. 267

While this is helpful in capturing the models’ gen- 268

eral scope of understanding and generalizing, it 269

fails to focus on the language generation capabili- 270

ties of the models, which is our main concern. 271

SCROLLS (Shaham et al., 2022). 272

The Benchmark, focusing on the overall Natural 273

Language Generation capabilities of LLMs, is the 274

most similar to our research. It attempts to bench- 275

mark the performance of Efficient Transformers 276

in tasks similar to the ones used in pre-training, 277

such as span corruption from the original T5 model 278

(Raffel et al., 2020b). While the SCROLLS paper 279
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focuses on a variety of tasks, we focus only on the280

summarization task, as it holds relevance for sev-281

eral industry-related use cases. Additionally, the282

SCROLLS benchmark evaluates only the Efficient283

Transformers with long-range capabilities, whereas284

we also include the latest LLMs which have surged285

in popularity.286

An Examination of Large Language Models287

(Zhao et al., 2023). A survey following the devel-288

opment and significance of large language models289

(LLMs). Tracing the progression from statistical290

language models to today’s sophisticated LLMs, it291

aligns with the historic relevance and evolution of292

our study. The survey places emphasis on the unan-293

ticipated emerging capabilities of LLMs, such as294

in-context learning, which are non-existent in their295

smaller counterparts, aligning with our attempt to296

study how increased size improves summarization297

performance.298

4 Benchmark299

4.1 Datasets300

To evaluate the performance of each model and how301

it varies given different context lengths, we have302

selected three datasets given the specificity of their303

domains and overall general features. Furthermore,304

below is a brief summary of each, along with a305

detailed length analysis in Table 1.306

arXiv (Cohan et al., 2018). Based on scientific307

articles from the arXiv platform, this dataset uses308

abstracts as a reference summary which ensures309

high-quality human-written summaries. In addi-310

tion, as articles are often long and come from a311

complex lexical domain, they present themselves312

as an ideal medium for the long-range context trans-313

former evaluation we intend to accomplish.314

PubMed (Cohan et al., 2018). Similarly to315

arXiv, PubMed focuses on the scientific domain,316

albeit with a much narrower scope, focusing only317

on medical publications. All in all, we include it in318

the benchmark despite sharing the same structure319

with arXiv, in the sense that we also aim to evaluate320

these models’ domain-adaptation ability.321

GovReport (Huang et al., 2021). Stemming322

from the reports of government meetings, GovRe-323

port is an interesting addition to the benchmark as324

both the summaries and original texts are signifi-325

cantly longer than the other datasets, as observed in326

table 1. Moreover, per the authors, GovReport sum-327

maries source the relevant bigrams from a larger328

portion of the original text compared to the other329

datasets, further enabling our analysis of the rela- 330

tionship between model performance and encoding 331

length. 332

Dataset # Doc # W # Sum W

arXiv 215,913 6029.9 272.7
PubMed 133,215 3049.9 204.4
GovReport 19,466 9409.4 553.4

Table 1: Dataset Size Analysis. Where relevant, aver-
ages are reported for each dataset. # Doc refers to the
number of documents, # W and # Sum W refers to the
number of words in the original text and summaries,
respectively.

4.2 Preprocessing and filtering 333

In order to ensure quality and consistency, we repro- 334

duce the SCROLLS (Shaham et al., 2022) prepro- 335

cessing procedure by removing samples meeting 336

the following criteria: 337

1. The summary text is longer than half of the 338

original text. 339

2. The original text is a thousand times longer 340

than the summary. 341

3. The summary exists verbatim in the original 342

text. 343

Additionally, and as is to be expected, this re- 344

moved only a small number of samples given 345

the datasets’ inherent quality and prefiltering per- 346

formed by their authors. Nonetheless, further de- 347

tails on the number of removed samples can be 348

found in table 2, where we can verify that at most 349

4% of the samples were removed, a small enough 350

percentage that we argue the datasets’ overall char- 351

acteristics were maintained. 352

# Samples

Dataset Train Del % Del

arXiv 203,037 6253 3%
PubMed 119,924 4439 4%
GovReport 17,517 63 0.4%

Table 2: Preprocessing statistics. We report the number
of samples in the training split of the dataset before
and after the preprocessing procedure, along with the
percentage of samples removed.
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4.3 Models353

As per the motivation given in the background and354

related work sections, and given the large number355

of tokens in our datasets, we have chosen models356

able to handle these samples efficiently. Moreover,357

we think our selection should reflect the release358

timeline of these new architectures to illustrate359

progress and the expressiveness of the benchmark.360

With these thoughts in mind, we have chosen361

BART (Lewis et al., 2019) as a baseline model and362

compared it with BigBirdPegasus (Zaheer et al.,363

2021) and PegasusX (Phang et al., 2022), both pos-364

sessing long-range capabilities. Additionally, we365

compare these representative models with state-of-366

the-art LLMs including LLaMA (Touvron et al.,367

2023) and its derivatives vicuna, chatGPT with368

GPT 3.5 (OpenAI., 2022) as the backbone and369

lastly Falcon (Almazrouei et al., 2023). Since all370

of these models are much different in size and ar-371

chitecture, we tried to optimize each model to be372

the best version of itself while following the us-373

ability guidelines. We discuss all these models in374

their respective subsections below, but we have also375

summarized the models in Figure 1.376

4.3.1 BART377

Lewis et al. (2019) is a combination of two ideas378

and architectures that followed the original trans-379

former proposal. For the encoder, it makes use of380

a BERT-style (Devlin et al., 2019) procedure, ob-381

taining embeddings by reconstructing masked-out382

tokens in the input sentence. Meanwhile, the de-383

coder segment is identical to the GPT-like decoder384

found in most LLMs.385

Furthermore, due to its early popularity as a sum-386

marization model for short-form text like news arti-387

cles in XSUM (Narayan et al., 2018), we felt it was388

natural to include it as a baseline for the evaluation389

of other contemporary models.390

4.3.2 BigBirdPegasus391

Zaheer et al. (2021) appears as a modification of the392

attention module proposed by Ainslie et al. (2020)393

with the inclusion of randomness in the attention394

pattern, allowing select tokens to randomly attend395

to others. Furthermore, as demonstrated theoreti-396

cally by the authors, this pattern serves as an ap-397

proximation to the full attention matrix while pre-398

serving linearity with respect to the input size.399

Moreover, the model itself is akin to a Pegasus400

model, the differentiating factor remains the special401

attention module introduced here. We choose to402

include BigBirdPegasus due to it being one of the 403

first models in the efficient transformer class that 404

claimed state-of-the-art results when it was first 405

published. 406

4.3.3 PegasusX 407

Phang et al. (2022) perform an extensive investi- 408

gation of how to best adapt transformer models 409

to long sequence data. Among other issues, they 410

investigate whether an adaptation is more success- 411

ful by performing additional pretraining over large 412

documents, only using these large documents for 413

pretraining or disregarding them entirely until fine- 414

tuning for downstream tasks, finding that these 415

models benefit from further pretraining even if it’s 416

only for a relatively small portion of the training 417

samples. 418

Furthermore, the authors suggest a variation of 419

the local attention architecture pattern we have dis- 420

cussed before: by padding the blockwise attention 421

by half a block in every other layer, they effectively 422

can introduce dependencies between blocks that 423

would otherwise be self-contained while not in- 424

creasing the implementation complexity. Together 425

with the global tokens, this attention architecture 426

allows the model to perform competitively in both 427

short and long-sequence summarizations. 428

4.3.4 GPT-3.5 429

A major revelation in the current LLM landscape is 430

the instruction fine-tuning approach that led to the 431

explosion in popularity of the ChatGPT2 platform 432

and its model predecessor, InstructGPT (Ouyang 433

et al., 2022). By leveraging Reinforcement Learn- 434

ing from Human Feedback (RLHF), as introduced 435

in Ziegler et al. (2020), these models can follow 436

arbitrary instructions, making them suitable for 437

a downstream summarization task. Nevertheless, 438

this model has a large performance bottleneck in 439

its small context length, allowing it to encode only 440

up to 4k tokens. 441

In this publication, we are using the version 442

based on GPT-3.5, since we have not been given ac- 443

cess to the larger and more powerful GPT-4 version. 444

Although the architecture of this model is private 445

and we cannot accurately compare it to models 446

of the same size, we felt that its inclusion in our 447

evaluation suite is natural as it represents the best 448

contemporary capabilities of (assumed) reasonably 449

sized models. 450

2https://chat.openai.com/
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Figure 1: A taxonomy over some representative LLMs suitable for a Text Summarization task where the bold text
indicates the models included in our experiments.

4.3.5 LLaMa and Derivatives451

The LLaMa (Touvron et al., 2023) family of lan-452

guage models was introduced as a competing foun-453

dational LLM to the GPT family. We provide eval-454

uation data on the 7 and 13 billion parameter ver-455

sions to further demonstrate different summariza-456

tion performances across different model sizes.457

Moreover, a direct comparison to GPT-3.5 and458

the remaining Seq2Seq models would be unfair459

given the lack of any instruction-fine-tuning on460

the LLaMa models. To this effect, we also evalu-461

ate Vicuna (Chiang et al., 2023), a model derived462

from LLaMa by fine-tuning it on data collected463

from user conversations with the ChatGPT plat-464

form, a method that has proven incredibly effective465

at instruction-fine-tuning. Other reasonable options466

for instruction-fine-tuned LLaMa derivates might467

as well be Alpaca (Taori et al., 2023) and Wiz-468

ardLM (Xu et al., 2023), which are derived from469

different fine-tuning datasets. We choose Vicuna470

since it promises better performance on reason-471

ing benchmarks such as MMLU (Hendrycks et al.,472

2021), HellaSwag (Zellers et al., 2019), and the473

AI2 Reasoning Challenge (Clark et al., 2018).474

Also, as is the case with the above model,475

LLaMa is only capable of handling up to 2K tokens476

of context, making it extremely handicapped in a477

long-document summarization situation.478

4.3.6 Falcon479

Falcon-40B (Almazrouei et al., 2023) is a new entry480

into the LLM space. It does not bring breakthrough481

innovations when compared to LLaMa, however, it482

demonstrates impressive comprehensive abilities,483

even outperforming LLaMa’s 65B version on the484

benchmarks described above.485

Their differences come mostly from the training486

data used. This model has been trained on a portion 487

of the RefinedWeb (Penedo et al., 2023) dataset 488

augmented with curated text inspired by The Pile 489

(Gao et al., 2020), while LLaMa uses a dataset 490

which, albeit detailed in the original publication, 491

has not been publicly released. 492

Finally, for evaluation, we use the instruction 493

fine-tuned version of Falcon with both 7 and 40 494

billion parameters, which, akin to the above model, 495

suffers from a limited 2k tokens context window. 496

4.4 Metrics 497

While there has been much discussion on the appro- 498

priateness of the Rouge (Lin, 2004) score for auto- 499

matic evaluation of summarization systems (Fabbri 500

et al., 2021; Graham, 2015; Ng and Abrecht, 2015), 501

mostly due to it being n-gram based and thus not 502

dealing properly with different expressions convey- 503

ing the same sentiment, it is still the most (and 504

only) reported metric in new model publications 505

and benchmarks. 506

This is mostly due to the lack of superior alter- 507

natives with METEOR (Banerjee and Lavie, 2005) 508

and BLEU (Papineni et al., 2002) suffering from 509

the same n-gram-based fate of failing to capture 510

paraphrases. On the other hand, the recently pro- 511

posed BERTScore (Zhang et al., 2020) avoids this 512

problem by computing embedding similarity be- 513

tween generated and original texts. 514

Nevertheless, according to the findings in Koto 515

et al. (2021), the correlation between BERTScore 516

and human evaluation of generated summaries 517

for English text is similar to Rouge. As a re- 518

sult, we have opted to focus on the established 519

Rouge, rather than BERTScore. We report both 520

the obtained ROUGE-1, ROUGE-2, ROUGE-L 521

scores and the geometric mean between ROUGE-1, 522
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ROUGE-2, and ROUGE-L, similar to the proce-523

dure in other publications.524

5 Experiments525

As proposed, we evaluate the above models on the526

previously described datasets. With respect to the527

models, we first create a distinction between the528

models that are meant to be fine-tuned and the ones529

that are to be used out of the box.530

In the section below, we provide technical details531

and model configurations related to fine-tuning and532

inference.533

5.1 Fine-tuning534

Given the input size limitations, the vanilla Seq2seq535

BART is fine-tuned on its maximum input context536

of 1024. The Efficient transformer BigBirdPegasus537

is fine-tuned to its maximum input length of 4096538

tokens. PEGASUS-X, which supports up to 16384539

tokens is fine-tuned on 4096 tokens as well as 8192540

tokens to evaluate the effect of longer context on541

the abstract summarization task. We fine-tuned542

all the Seq2Seq models for a number of epochs543

dependent on dataset size and convergence level.544

Further details can be found in Appendix A. After545

fine-tuning, we perform inference and use the cor-546

responding ROUGE score for the final evaluation.547

5.2 Inference548

In order to evaluate the models’ performance, we549

run inference in a Seq2Seq fashion after the fine-550

tuning procedure for the Efficient Transformer551

class.552

Inference in the LLM models is not trivial553

since the usual fine-tuning is too computation-554

ally demanding and the usual in-context learning555

paradigm is not suited for the summarization task.556

Even a single document doesn’t fit in the whole557

context window, making it impossible to provide558

an example sample. Given the above reasoning, we559

decide to evaluate these LLMs by prompting them560

to summarize the provided content appropriately.561

More details can be found in Appendix A.562

6 Results and Discussion563

As explained in the experiments section, we distin-564

guish models that should be fine-tuned and those565

that present good results as-is. By fine-tuning566

BART, BigBirdPegasus, and PEGASUS-X with567

different configurations, we have obtained differ-568

ent versions of the models for our evaluation pur-569

poses. We also make use of the original model 570

weights without any fine-tuning for analysis. For 571

the remaining LLMs that were meant to be used 572

out-of-the-box, we performed direct inference. 573

Additionally, we have reported the sample sum- 574

maries generated by some of the models for the 575

same input text in Appendix B. While we use 576

the ROUGE score as the main indicator of perfor- 577

mance, this appendix section provides some addi- 578

tional insight into the model’s performance than 579

the one provided by automatic evaluation. 580

We report results with both ROUGE-1, ROUGE- 581

2, ROUGE-L and the geometric mean of ROUGE- 582

{1,2,L} for all models evaluated with the three 583

datasets detailed previously. While we discuss the 584

key findings from our experiments in the later part 585

of this section, the results are summarized in Ta- 586

ble 3. 587

Efficient Transformers remain competitive via 588

fine-tuning: from a bird’s eye view, it is clear 589

that the Efficient Transformers, namely BigBird- 590

Pegasus, and PEGASUS-X, are clear winners 591

as they consistently perform better in terms of 592

ROUGE scores. These are impressive results given 593

the much smaller size and computational require- 594

ments of these models, as compared to the state- 595

of-the-art LLMs. Furthermore, as evident in Ap- 596

pendix B, the summaries generated by PEGASUS- 597

X and BigBird-Pegasus, essentially the seq2seq 598

models fine-tuned on the same domain, produce 599

summaries that are more in line with the technical 600

language of the paper. Whereas the ones generated 601

by LLMs like chatGPT use simpler words in the 602

summaries. However, we cannot neglect the ad- 603

ditional effort and costs required due to the need 604

for fine-tuning over a specific dataset, as models 605

without fine-tuning perform much worse than their 606

fine-tuned counterparts. Nevertheless, for an indus- 607

trial or production setting, a smaller model like an 608

Efficient Transformer might be a better choice. 609

Longer Context Windows have their downsides: 610

for the models that support larger context windows 611

such as PEGASUS-X and GPT-3.5, scaling the 612

context window to 16k does increase their ROUGE 613

scores, albeit only marginally in most cases. A pos- 614

sible explanation for this phenomenon is that the 615

relevant text for a high-quality summarization isn’t 616

evenly distributed in the source document, thus fur- 617

ther context has diminishing returns. Furthermore, 618

given the fact that increasing the context window 619

length directly increases the training/inference time 620

7



as well as memory requirements, we can argue that621

in light of the marginally better ROUGE scores, for622

resource-constrained environments and particular623

dataset distributions, scaling the input length may624

not be the ideal choice.625

Bigger Models do perform better: while it is626

a known fact in the LLM community that bigger627

models perform better up to a certain degree, we628

confirm this to be the case in our limited experi-629

ment set. We compare two of the most prominent630

open-source models, LLaMa (7b vs 13b) and Fal-631

con (7b vs 40b) and, as expected, the larger variant632

performs better in both cases. Additionally, GPT-633

3.5 outperforms both Falcon and LLaMa models.634

While the exact size of GPT-3.5 is unknown, we do635

know that GPT-3 has 175B parameters and there-636

fore assume the 3.5 variant to be, at least, bigger637

than Falcon’s 40B parameters.638

GPT-3.5 outperforms other LLMs: among all the639

LLMs in our domain-specific text summarization640

study, GPT-3.5 with a 16k context window seems641

to perform the best in terms of ROUGE score. Al-642

though we used only a portion of the full datasets,643

given the use of random sampling (more details644

in Appendix A), reported scores should be indica-645

tive of model performance on the overall datasets.646

Concluding, while the others are competitive, this647

model emerges as a strong and versatile option648

for summarization applications, despite the privacy649

concerns related to its closed-source nature.650

Limitations651

Despite our best attempt to provide an overview of652

LLMs with regard to their ability to understand653

domain-specific text, several dimensions of the654

study could not be explored. A major cause for655

this is the hardware restrictions. Although we had656

access to high-quality hardware, its availability was657

scarce, forcing us to use only one or two GPUs at658

a time. This limitation made it so we could not test659

the larger LLMs which promise the best overall660

performance in other tasks than summarization.661

Another hindrance from the lack of hardware662

availability: we intended to evaluate performance663

using the latest domain-adaptation methods, such664

as adapters (Houlsby et al., 2019) and LORAs (Hu665

et al., 2021) that make it possible to fine-tune these666

large models on downstream tasks. Exploring this667

paradigm would be ideal since the usual LLM in-668

context learning is impossible for long-document669

summarization: the size of the documents makes it670

so even one document is hard to fit in the predefined 671

model context length, therefore providing more 672

examples for guidance is impossible. 673

On the other hand, we also would like to in- 674

clude GPT-4 (OpenAI, 2023) as the latest and great- 675

est LLM but its (current) exclusive API access 676

and large associated costs were prohibitive. To- 677

gether with its maximum 32k context length and 678

human-level comprehensive abilities, we imagine 679

this model to have very competitive performance 680

with the finetuned Seq2Seq models, all without the 681

need for an expensive training step and for deploy- 682

ing several models for various downstream tasks. 683

This is illustrated by the impressive performance 684

of GPT-3.5 with a 16k context length. 685

Finally, we mention the lack of expressiveness in 686

the ROUGE metric which is not ideal for an abstrac- 687

tive summarization setting. We have mentioned be- 688

fore how it is a poor proxy of human perception of 689

summarization quality, which is shown by the high 690

ROUGE scores of the standard BART model with- 691

out any fine-tuning. Inspecting the model’s outputs, 692

we notice how often it simply repeats the original 693

text. This coincidentally is similar to summaries, 694

given that the introduction section usually provides 695

a reasonable overview of the text. In the future, we 696

hope to leverage new metrics that are more in line 697

with what humans perceive as high-quality sum- 698

maries. Additionally, we also wish to study the 699

effectiveness of these automatic evaluation scores 700

by using human evaluation as a baseline. 701

Ethics Statement 702

Throughout our experiments, we strictly adhere to 703

the ACL Code of Ethics. Since we used already es- 704

tablished open-source benchmark datasets, the con- 705

cern of privacy does not apply. Furthermore, since 706

no additional data was collected or stored, and no 707

human annotators were used in the experiment, we 708

minimized the risk of prejudice. Through our fine- 709

tuning strategies, no additional bias was introduced 710

into the models, other than what might already be 711

part of the model weights or the benchmark dataset. 712

The goal of the research was to evaluate the text 713

summarization capabilities of existing models. The 714

results and discussions in this paper are meant to 715

further promote research in the area of domain- 716

specific language modeling with an over-arching 717

goal of bridging the gap between academia and 718

application. All training scripts and trained models 719

will be made available to the research community. 720
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Model Size Tuned Input Datasets

PubMed arXiv GovReport

Classical Transformers

BART 140m × 1024 33.99 / 23.57 / 23.57 - 23.57 34.36 / 34.36 / 34.36 - 23.57 49.46 / 49.46 / 49.46 - 23.57
BART 140m 1024 13.72 / 0.37 / 5.59 - 3.05 15.68 / 0.43 / 6.15 - 3.46 10.65 / 0.05 / 4.76 - 1.37

Efficient Transformers

BigBirdPegasus 577m × 4096 23.57 / 5.57 / 15.08 - 12.55 24.51 / 5.61 / 15.82 - 12.96 27.45 / 7.73 / 15.78 - 14.97
BigBirdPegasus 577m 4096 45.11 / 19.67 / 27.51 - 29.00 43.09 / 16.77 / 26.32 - 26.69 48.61 / 20.47 / 24.76 - 29.10
PEGASUS-X 569m 4096 44.77 / 19.38 / 27.41 - 28.76 45.05 / 18.14 / 27.18 - 28.11 52.91 / 23.30 / 25.55 - 32.00
PEGASUS-X 569m 8192 46.95 / 22.00 / 29.37 - 31.19 46.48 / 19.42 / 28.23 - 29.43 55.55 / 25.45 / 28.05 - 34.10
PEGASUS-X 569m × 16384 2.67 / 0.23 / 2.44 - 1.14 5.77 / 0.85 / 5.06 - 2.92 6.89 / 0.86 / 5.27 - 3.14
PEGASUS-X* 569m 16384 51.00 / 24.7 / 46.6 - 38.9 50.00 / 21.8 / 44.6 - 36.5 60.30 / 30.00 / 31.50 - 38.5

Large Language Models

LLaMA 7b × 2048 9.45 / 0.55 / 6.50 - 3.24 13.02 / 0.56 / 8.75 - 3.99 14.35 / 1.43 / 8.09 - 5.50
LLaMA 13b × 2048 21.31 / 4.79 / 10.36 - 10.18 34.57 / 11.14 / 20.32 - 19.9 31.42 / 6.16 / 11.98 - 13.24

Instruction Fine-tuned Large Language Models

Falcon 7b × 2048 36.53 / 9.54 / 18.23 - 18.52 34.40 / 10.43 / 18.23 - 18.70 27.32 / 3.60 / 11.96 - 10.56
Vicuna 13b × 2048 30.48 / 9.03 / 16.29 - 16.48 39.24 / 15.77 / 22.68 - 24.12 31.19 / 8.68 / 15.06 - 15.97
Falcon 40b × 2048 29.68 / 8.15 / 17.13 - 16.06 32.65 / 10.32 / 17.50 - 18.06 44.89 / 10.63 / 16.56 - 19.92
GPT-3.5 - × 4096 42.88 / 15.19 / 23.44 - 24.81 42.80 / 14.34 / 22.40 - 23.95 38.53 / 14.88 / 19.51 - 22.36
GPT-3.5** - × 16384 43.34 / 15.81 / 23.95 - 25.41 43.76 / 15.30 / 23.43 - 25.03 39.93 / 16.07 / 20.24 - 23.51

Table 3: ROUGE scores of all models in the format ROUGE-1 / ROUGE-2 / ROUGE-L - geometric mean of
ROUGE-{1,2,L} computed in inference across all three benchmark datasets. * implies that results have been taken
from the original Pegasus-X publication. ** implies that only a portion of each dataset was used.
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Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.1000
Brown, Alec Radford, Dario Amodei, Paul Chris-1001
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-1002
guage models from human preferences.1003

A Training Details1004

A.1 Training1005

The fine-tuning procedure was done by leveraging1006

2 Nvidia A100-80GB GPUs, relying on the Hug-1007

gingFace Transformers (Wolf et al., 2020) and Mi-1008

crosoft Deepspeed3 libraries for distributed train-1009

ing. Furthermore, we plan on releasing the fine-1010

tuned models along with the codebase used in our1011

study.1012

Moreover, hyperparameters for the above train-1013

ing run are described in Table 4, and the configura-1014

tion for Deepspeed Stage 2 can be found in Table 5.1015

In this setting, all values set to auto are automati-1016

cally filled by the HuggingFace Trainer according1017

to the user-provided or default values if none are1018

set.1019

A.2 Inference1020

For inference, we rely on a single Nvidia A100-1021

80GB which is capable of handling our models1022

in the bfloat16 format. The one exception is1023

Falcon-40B which required loading the model in1024

an 8bit quantized fashion utilizing the bitsandbytes1025

(Dettmers et al., 2022) library, we consider possi-1026

ble performance losses due to this approach mostly1027

insignificant as the obtained ROUGE scores lie in1028

the expected range. The GPT-3.5 model was evalu-1029

ated using the API made available from OpenAI4,1030

where we utilized the latest snapshot available, in1031

this case, gpt-3.5-turbo-0613 dated to June 13th,1032

2023.1033

As was the case for the training procedure, we1034

sample a maximum of 256 tokens for the arXiv and1035

PubMed datasets, while scaling to 1024 tokens for1036

the GovReport dataset, as is standard procedure in1037

other contemporary publications.1038

Also, regarding the prompt utilized to perform1039

inference on the open-source LLM models, we1040

show it in Figure 2. In order to make sure the1041

"SUMMARY: " portion is included in the context1042

window, we always force it as a suffix as the last1043

input tokens.1044

Finally, for the GPT model, we used the sys-1045

tem message, "You are an expert at summarization.1046

3https://github.com/microsoft/DeepSpeed
4https://platform.openai.com/

Proceed to summarize the following text", followed 1047

by the maximum portion of the source document 1048

able to fit in the model’s context window. What’s 1049

more, with the 16k context-length experiments we 1050

could only experiment with a sample of the overall 1051

datasets. We set the randomization seed in PyTorch 1052

to 1337 to ensure our experiments are reproducible 1053

and promptly select a 10% slice of the full dataset 1054

for analysis. 1055

B Sample Output 1056

Summaries for the sample (idx 42) from the test 1057

split of pubmed dataset. 1058

PEGASUS-X fine-tuned on 8192 tokens: 1059

multiple endocrine neoplasia ( men ) type 2a and 1060

b syndromes are rare but significant endocrine dis- 1061

eases that are increasingly encountered by pediatri- 1062

cians. mtc is a relatively slow - growing tumor but, 1063

if metastasized or relapsed, it becomes very aggres- 1064

sive causing more than 13% of all thyroid cancer - 1065

related mortality. mtc is usually diagnosed in the 1066

childhood, and the majority of mtc diagnosed in 1067

the childhood is hereditary. mtc diagnosed during 1068

childhood almost always results from a dominantly 1069

inherited or de novo activating mutations in the 1070

ret proto - oncogene, which encodes the ret recep- 1071

tor tyrosine kinase. advances in predictive genetic 1072

testing for ret mutations have enabled early diagno- 1073

sis of hereditary men syndromes and prophylactic 1074

thyroidectomy in presymptomatic patients to pre- 1075

vent mtc. in this review, we discuss the etiology of 1076

pediatric mtc and currently available therapeutic 1077

modality for the cancer. \n 1078

GPT 3.5 direct inference on 4192 tokens: 1079

Thyroid cancer is a common type of cancer that 1080

accounts for about 1% of all cancers. Medullary 1081

thyroid cancer (MTC) is a type of thyroid cancer 1082

that is slow-growing but can become aggressive if it 1083

spreads or relapses. It is more common in children 1084

and is usually hereditary. MTC is caused by muta- 1085

tions in the RET proto-oncogene. Early diagnosis 1086

of hereditary MTC through genetic testing has en- 1087

abled preventive measures such as thyroidectomy 1088

in presymptomatic patients. The main treatment 1089

for MTC is surgical removal of the thyroid, and 1090

adjuvant treatment options are limited. However, 1091

newer targeted therapies such as vandetanib and 1092

cabozantinib have shown promise in clinical tri- 1093

als. Prophylactic thyroidectomy at an early age is 1094

recommended for children with hereditary MTC to 1095

reduce the risk of developing aggressive MTC. 1096
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Dataset Batch Size Learning Rate Epochs Input Tokens Gen. Tokens Beam Size

BART

arXiv 128 8e-4 4 1024 256 1
PubMed 128 8e-4 4 1024 256 1
GovReport 128 8e-4 8 1024 1024 1

BigBirdPegasus

arXiv 64 8e-4 4 4096 256 1
PubMed 64 8e-4 4 4096 256 1
GovReport 64 8e-4 8 4096 1024 1

PEGASUS-X

arXiv 64 8e-4 4 4096 / 8192 256 1
PubMed 64 8e-4 4 4096 / 8192 256 1
GovReport 64 8e-4 8 4096 / 8192 1024 1

Table 4: Hyperparameters for fine-tuning models on selected datasets

Key Value

bf16.enabled auto
optimizer.type AdamW
optimizer.params.lr auto
optimizer.params.betas auto
optimizer.params.eps auto
optimizer.params.weight_decay auto
scheduler.type WarmupLR
scheduler.params.warmup_min_lr auto
scheduler.params.warmup_max_lr auto
scheduler.params.warmup_num_steps auto
zero_optimization.stage 2
zero_optimization.offload_optimizer.device cpu
zero_optimization.offload_optimizer.pin_memory true
zero_optimization.allgather_partitions true
zero_optimization.allgather_bucket_size 2e8
zero_optimization.overlap_comm true
zero_optimization.reduce_scatter true
zero_optimization.reduce_bucket_size 2e8
zero_optimization.contiguous_gradients true
gradient_accumulation_steps auto
gradient_clipping auto
steps_per_print 2000
train_batch_size auto
train_micro_batch_size_per_gpu auto
wall_clock_breakdown false
zero_allow_untested_optimizer true

Table 5: Deepspeed configuration parameters. This table directly maps to a JSON file.
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Figure 2: Prompt used to evaluate the Large Language Models on the summarization datasets.

BigBird-Pegasus fine-tuned on 4192 tokens:1097

thyroid cancer ( mtc ) is the most common en-1098

docrine neoplasia. mtc is characterized by the1099

development of a highly penetrant, autosomal dom-1100

inant, and highly aggressive form of mtc. the most1101

common genetic mutation in mtc is the ret muta-1102

tion. the men2a subtype is characterized by the1103

early development of an aggressive form of mtc in1104

all affected individuals, typically during the first1105

year of life. the men2b subtype is characterized1106

by the early development of an aggressive form of1107

mtc in all affected individuals, typically during the1108

first year of life. the men2a subtype, accounting1109

for 9095% of the men type 2 cases, is a highly1110

penetrant, autosomal dominant endocrine tumor1111

syndrome characterized by the development of mtc1112

in > 90% of ret mutation carriers. the men2b sub-1113

type, accounting for approximately 510% of the1114

men type 2 cases, is characterized by the early1115

development of an aggressive form of mtc in all1116

affected individuals, typically during the first year1117

of life. the men2a subtype, accounting for 9095%1118

of the men type 2 cases, is closely associated with1119

men2a, demanding a genetic screening for men21120

\n’1121
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